

Approved by:

Checked by:

Issued by:

433.92MHz SAW Resonator

433.92 MHz SAW Resonator

Low Series Resistance Quartz Stability Rugged, Hermetic, Low-profile SMD7.5X3.5 Case

The R433T2 is a true one-port, surface-acoustic-wave (SAW) resonator in low-profile SMD case. It provides reliable, fundamental-mode. quartz frequency stabilization of fixed-frequency transmitters operating at 433.92 MHz. The R433T2 is designed specifically for remote-controls and wireless security transmitters. Operating in the Europe underETS11-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units	
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm	
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC	
Case Temperature	-40 to +85	°C	

Electrical Characteristics

	Characteristics	Sym	Notes	Minimum	Typical	Maximum	Units	
Center Frequency (+25°C)	Absolute Frequency	fc		433.845	433.995		MHz	
	Tolerance from 43 <mark>3.920MHz</mark>	∆ f _c	2,3,4,5			±75	KHz	
Insertion Loss	nsertion Loss		2,5,6	1.5		2.0	dB	
Quality Factor	r Unloaded Q				12.800			
	50 Ω loaded Q	QL	5,6,7		2.000			
Temperature Stability	Turnover Temperature	To		24	39	54	$^{\circ}$	
	Turnover Frequency	fo	5,7,8		f _c +2.7		KHz	
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C²	
Frequency Aging	Absolute Value during the First Year	If _A I	1		≦10		ppm/y τ	
DC Insulation Resistance b		5	1.0			ΜΩ		
RF Equivalent RLC Model Motional Resistance		R _M			18	26	Ω	
	L _M	5,7,9		86.0075		μН		
	См	5,7,9		1.56417		pF		
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	1.7	2.0	2.3	pF	
	Transducer Static Capacitance	СР	5,6,7,9		1.7		pF	
Test Fixture Shunt Inductar	L _{TEST}	2,7		78		nH		
Lid Symbolization (in Addition	LR433T2							

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

Notes:

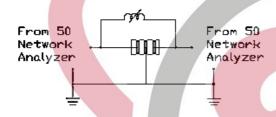
- 5. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 6. The center frequency, f_c , is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the $50\,\Omega$ test system(VSWR \leqq 1.2:1).The shunt inductance, L_{TEST} , is turned for parallel resonator with C_O at f_c . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_c .
- One or more of following United States patents apply:4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature T_c=25 °C ±2 °C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- 2. Derived mathematically from one or more of the following directly measured parameter: f_c , IL, 3dB bandwidth, f_c versus T_{c_i} and C_o .
- Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal frequency at any case temperature, T_c. may be calculated from:
- 4. This equivalent RLC model approximates resonators performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (non-motional) capacitance between pin 1 and pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.

Electrical Connections

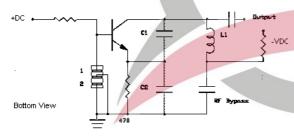
This one-port, two-terminal SAW resonator is bi-directional. The terminals are interchangeable with the exception of circuit board layout.

Pin	Connection							
1	Terminal 1							
2	Terminal 2							

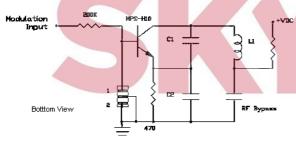


Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is turn to resonate with the static capacitance, C_o at $F_{\rm c}.$

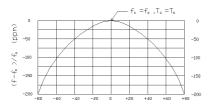

Electrical Test:

Power Test:

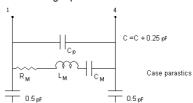


Typical Application Circuits

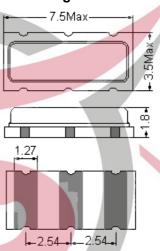
Typical Low-Power Transmitter Application:



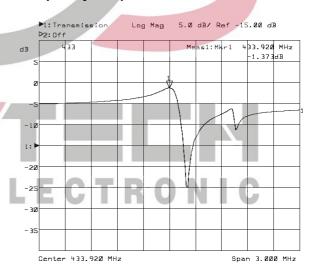
Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

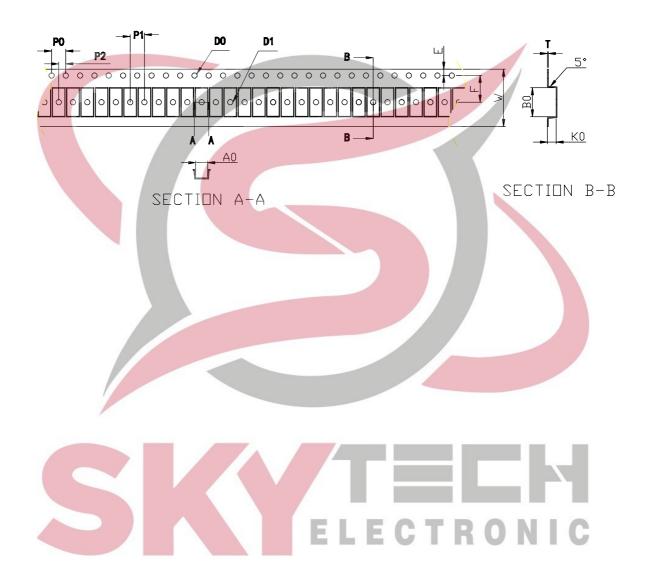


Equivalent LC Model


The following equivalent LC model is valid near resonance:

Case Design

Frequency Response



433.92MHz SAW Resonator

Taping structure

Component load: per 7' reel 2500pcs or per13' reel 8000pcs

ITEM	W	Αo	Во	Κo	Е	F	Do	D1	Po	P ₁	P2	Τ	
DIM	16.0	3.40	7.85	2.00	1.75	7.50	Ø1.50	Ø1.50	4.00	4.00	2.00	0. 30	PCS/R
TOLE	+0.30 -0.30	+0.10 -0.00	+0.10 -0.10	+0.10 -0.10	+0.10 -0.10	+0.10 -0.10	+0.10 -0.00	+0.25 -0.00	+0.10 -0.10		+0.10 -0.10	+0.05 -0.05	M/R

